四川大学研发新型热界面材料用于提升电子设备散热效率!

发布时间:2024-10-05     作者: 乐鱼全站网页版登录入口

 

  热界面材料(TIMs)是现代电子设备中不可或缺的组成部分,因其在散热管理中发挥着关键作用,成为了研究热点。然而,传统TIMs通常面临热导率低、接触热阻高等挑战,限制了其在高性能电子设备中的应用。随着电子器件向更高功率密度的发展,对TIMs的性能提出了更高的要求,迫切地需要新材料以提升散热效率。有鉴于此,四川大学高分子科学与工程学院傅强教授/吴凯副研究员、德克萨斯大学奥斯汀分校余桂华教授团队合作通过将不同粒径的氮化铝(AlN)颗粒与液态金属结合,制备出胶态液态金属复合材料。这些材料不仅提升了界面热传导性能,还大大降低了界面热阻。实验根据结果得出,胶态液态金属在不同厚度下展现出优越的热导率和低接触热阻,显著缩小了现有TIMs与理论预测之间的差距。

  此外,流变学分析揭示了这些复合材料在高温条件下的流动性,使其适合于高热流密度应用。总的来看,胶态液态金属的引入为TIMs的研究提供了新的方向,有望在高性能电子科技类产品、数据中心和航空航天等领域实现大范围的应用。因此,针对热界面材料的创新研究具备极其重大的科学价值和应用潜力。

  】本文通过高分辨率透射电子显微镜(HRTEM)和扫描电子显微镜(SEM)等表征手段,揭示了胶态液态金属(LM)与氮化铝(AlN)颗粒之间的界面相互作用。通过对LM/AlN复合材料的微观结构分析,发现AlN颗粒均匀分散于液态金属中,形成了有效的热传导路径,这一发现表明胶态液态金属在提高热界面材料(TIMs)性能方面具有非常明显优势。针对胶态液态金属在高温条件下的流动行为,通过流变学分析,深入探讨了其屈服应力和储存模量的变化。结果显示,随着AlN颗粒浓度的增加,材料的储存模量和屈服应力明显地增强,表明该材料在高温下仍保持良好的流动性和热传导性能。这一微观机理的表征为理解胶态液态金属的流动特性提供了重要依据,有助于优化其在高热流密度应用中的表现。

  在此基础上,通过对不同厚度的样品进行稳态热流法和瞬态热传递法(TDTR)的结合测量,得到了胶态液态金属在不同压力下的界面热阻(Reff)和热导率(k)。结果显示,这种新型材料的热导率远超传统TIMs,同时Reff保持在低水平,表明其在实际应用中的优越性能。研究重点在于揭示材料设计理论与实际性能之间的关系,为进一步的应用提供了可靠的数据支持。

  】本文揭示了胶态液态金属在热界面材料中的潜力,特别是通过引入AlN颗粒来提升热导率与界面热阻的优化。科学研究表明,传统热界面材料往往面临着热导率不足与界面热阻过高的问题,而胶态液态金属的设计理念则为解决这一难题提供了新思路。通过机械化学合成与直接搅拌的方法,研究成功制备了拥有非常良好流动性和优异热传导性能的胶态液态金属。这一创新材料不仅在不同厚度下表现出低的界面热阻,还展示了其在高性能电子科技类产品和其他能源密集型领域的广泛应用潜力。这一研究的成功不仅为热界面材料的开发提供了重要的理论基础,也为未来新型功能材料的设计与应用指明了方向,激发了材料科学与工程领域的进一步探索。通过一直在优化材料成分与结构,未来可以期待胶态液态金属在更多高科技领域的突破性应用,推动有关技术的进步和发展。文献信息:Wu, K., Dou, Z., Deng, S. et al. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. (2024).